Contents
Various types of numbers: natural numbers, whole numbers, integers and rational numbers
Various types of numbers :
According to the properties and how they are represented in the number line, there are various types of numbers . The numbers are classified into different types, like natural number, integers, whole numbers etc.
Natural numbers
The natural numbers are those numbers that are used for counting and ordering. The set of natural numbers is often denoted by the symbol ,
The least natural number is 1 and there are infinitely many natural numbers. They are located at the right side of the number line (after 0)
Properties of natural numbers:
(i) Closure property: The sum and multiplication of any two natural numbers is always a natural number. This is called “Closure property of addition and multiplication” of natural numbers. Thus, is closed under addition and multiplication . If a and b are any two natural numbers, then
The difference between any two natural numbers need not be a natural number.
Example : 3 – 5 = -2 is a not natural number. Hence is not closed under subtraction.
Similarly
(ii) Commutative property : Addition and multiplication of two natural numbers is commutative. If and
Subtraction and division of two natural numbers is not commutative.
If a and b are any two natural numbers, then and
e.g. (i) 5 – 3 = 2 and 3 – 5 = -2 . Hence 5 – 3 ≠ 3 – 5
(ii)2 ÷ 1 = 2 and 1 ÷ 2 = 1.5 . Hence 2 ÷ 1 ≠ 1 ÷ 2
Therefore, Commutative property is not true for subtraction and addition.
(iii) Associative property : Addition and multiplication of natural numbers is associative.
If a, b and c are any three natural numbers, then and
e.g. (a) and
(b)
Subtraction and division of natural numbers is not associative .
It means for any natural number a , b and c and
(iv)Identity element : The additive identity of a natural numbers is zero and multiplicative identity of natrural numbers is 1. If a is any natural number, then and
(v)Distributive Property: Multiplication of natural numbers is distributive over addition and subtraction . If a, b and c are any three natural numbers, then a x (b + c) = ab + ac and a x (b – c) = ab – ac.
Whole numbers
All natural numbers together with ‘0’ are called whole numbers. The set of Whole numbers is denoted by W and written as W={0,1,2,3,4,5,……………………}
Integers
It includes all natural numbers , 0 and negative of natural numbers . It is denoted by ,
representation of integers on number line
Negative integers are on the left side of 0
Positive integers are on the right side of the zero
0 is neither +ve nor -ve.
Rational numbers
The numbers of the form
Thus,
Rational numbers include natural numbers , whole numbers and integers since every natural numbers , whole numbers and integers can be written as
where
You might also be interested in: