Important Algebra Formulas(List of Algebraic Identities)

- $(a+b)^{2}=a^{2}+b^{2}+2 a b$
- $(a-b)^{2}=a^{2}+b^{2}-2 a b$
- $(a+b)^{2}=(a-b)^{2}+4 a b$
- $(a-b)^{2}=(a+b)^{2}-4 a b$

$$
a^{2}+b^{2}=\frac{1}{2}\left[(a+b)^{2}+(a-b)^{2}\right]
$$

- $a^{2}-b^{2}=(a-b)(a+b)$
- $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
- $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
- $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
- $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
- $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$
- $(a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2 a b-22(2 c a$
- $(a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a,(b)(b+c)(c+a)$
- $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+2)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
- If $a+b+c=0$ then $a^{3}+b^{3} b^{3}+c^{3}=3 a b c$
- $a^{4}+b^{4}+a^{2} b^{2}=\left(a^{2}+\sqrt{2}+a b\right)\left(a^{2}+b^{2}-a b\right)$
- $a^{4}-b^{4}=(a-b)(a+b)\left(a^{2}+b^{2}\right)$
- $a^{8}-b^{8}=(a-b)(a+b)\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}\right)$
- If " n " is a natural number then

$$
a^{n}-b^{n}=(a-b)\left(a^{(n-1)}+a^{(n-2)} b+\ldots .+b^{(n-2)} a+b^{n-1}\right)
$$

- If " n " is a even number then

$$
a^{n}+b^{n}=(a+b)\left(a^{(n-1)}-a^{(n-2)} b+\ldots . .+b^{(n-2)} a-b^{(n-1))}\right)
$$

- If " n " is an odd number then

$$
a^{n}+b^{n}=(a-b)\left(a^{(n-1)}-a^{(n-2)} b+\ldots .-b^{(n-2)} a+b^{(n-1)}\right)
$$

-
- $a^{3}+b^{3}+c^{3}-3 a b c=\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
- If $\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}=\mathrm{ab}+\mathrm{bc}+\mathrm{ca}$ then $\mathrm{a}=\mathrm{b}=\mathrm{c}$
- If $\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \ldots \infty}}}}$ where $x=n(n+1)$ then

If $\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \ldots \infty}}}}=n+1$

- If $\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-\ldots \ldots \ldots \infty}}}}$ where $x=n(n+1){ }_{\text {then }}$

If $\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-\ldots \ldots \ldots \infty}}}}=n$

Remainder Theorem:

Let $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots \ldots .+a_{n} x^{n}$ bg a polynomial of degree $n \geq 1$, and let a be any real number. When is $p(x)$ divided by $(x-a)$, then the remainder is $p(a)$.

Factor theorem :

Let $p(x)_{\text {be a polynomial of degree greater than or equal to } 1 \text { and a be a real number such that } p(a)=, ~=~}^{\text {b }}$. 0 , then $(x-a)_{\text {is a factor of }} p(x)$.

Conversely, if $(x-a)$ is a factor of $p(x)$, then $p(a)=0$.

