Mensuration is a branch of mathematics that deals with the study of different geometrical shapes, their perimeter, area, surface area, curved surface area, volume etc. Basically, there are two type of geometric shapes (i) 2D shapes (ii) 3D shapes

2D shapes are : circle, square, rectangle, square , parallelogram, rhombus etc.

3D shapes are : cube , cylinder, cone , cuboid, sphere , prism , pyramid , cone etc.

Now let's learn all the important mensuration formulas involving 2D and 3D shapes. Using this mensuration formula list, it will be easy to solve the mensuration problems.

Mensuration formulas for 2D -shapes:

Name	Figure	Area	Perimeter
Rectangle	b $l = length,$ $b=breadth$	$l \times b$	2(l+b)
Square	$\frac{d}{a} = \text{side}, d=$	a^2 If d is given , then $A = \frac{d^2}{2}$	4 x side= 4a
Triangle (scalene)	a + b + c b = base, h = height or altitude of a triangle	(i) $\frac{1}{2} \times b \times c$ (ii) Heron's Formula $\sqrt{s(s-a)(s-b)(s-c)}$	a+b+c
Equilateral triangle	$\begin{array}{c} a \\ a \\ a \\ a \\ \hline a \\ \hline$	(i) $\frac{1}{2} \times a \times h$ (ii) $\frac{\sqrt{3}}{4}a^2$	3a

Quadrilateral	$\frac{D}{A}$ $\frac{AC=\text{diagonals}}{h_1, h_2\text{altitudes on AC from the vertices D and B respectively.}$	(i) $\frac{1}{2} \times AC \times (h_1 + h_2)$ (ii) $\frac{1}{2} \times$ product of diagonals x sin of the angle between them	AB+BC+CD+AD
Parallelogram	a b a a and b be the lengths of parallel sides and h be the height	(i)Area= base x height (ii) area= $absin\theta$, θ is the angle between the sides of the parallelogram	2(a+b)
Rhombus	a = each $a = each$	$\frac{1}{2} \times d_1 \times d_2$	4a
Trapezium	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ } \begin{array}{c} \end{array} \\	$\left(\frac{a+b}{2}\right) \times h$	AB+BC+CD+DA
Circle	$ \underbrace{\circ r}_{A} \\ \underline{r=radius}, $	πr^2	circumference= $2\pi r$

	00		
	$\pi = \frac{22}{7}$		
Semi-circle	r = radius	$\frac{1}{2}\pi r^2$	$\pi r + 2r$
Sector of a circle	$\frac{1}{P_{A}} = 2\pi r. \frac{\theta}{360^{\circ}}$	(i) $\pi r^2 \frac{\theta}{360^\circ}$ (ii) $\frac{1}{2}r \times l$	l+2r
Regular hexagon	a = each of the equal side	$\frac{3\sqrt{3}}{2}a^2$	6a
Regular octagon	a a a a a a a a a a	$2a^2\left(1+\sqrt{2}\right)$	8a

Name	Figure	Volume	Lateral /Curved surface area	Total surface Area
Cube	a=side/edge	a^3	$4a^2$	$6a^2$
cuboid	<u>b=breadth, h=height</u>	lbh	2(l+b)h	2(lb+bh+hl)
Right circular cylinder	<u>r= radius</u> of base h=height	πr^2	$2\pi rh$	$2\pi r(h+r)$
Right triangular prism	height	area of base x height	perimeter of base x height	lateral surface area+2(area of base)
Sphere	r=radius	$\frac{4}{3}\pi r^3$		$4\pi r^2$

Mensuration formulas for 3D -shapes:

Hemisphere	radius	$\frac{2}{3}\pi r^3$	$2\pi r^2$	$3\pi r^2$
Pyramid	base l= slant height	$\frac{1}{3}$ × base x height	$\frac{1}{2} \times$ perimeter of base x slant height	lateral surface area+base area
Cone	h = height, r = radius of base	$\frac{1}{3} \times$ area of base x $\frac{1}{3} \pi r^2 h$ height= $\frac{1}{3}$	$\pi r l$	$\pi r l + \pi r^2$
Frustum of a cone	r h R	$\frac{1}{3}\pi h(r^2 + Rr + R^2)$	$\pi l(r+R)$	lateral surface area+ $\pi(R^2 + r^2)$