Polynomials (practice sheet-1)

1 . '	Which	of the	following	is a	true	statement?
--------------	-------	--------	-----------	------	------	------------

(a)
$$5x^3$$
 is a monomial

(b)
$$x^2 + 5x - 3$$
 is a linear polynomial

(d)
$$x^2 + 4x - 1$$
 is a binomial

2. A quadratic polynomial whose product and sum of zeroes are $\frac{1}{3}$ and $\sqrt{2}$ respectively.

(a)
$$3x^2 - x + 3\sqrt{2}x$$

(b)
$$3x^2 - 3\sqrt{2}x + 1$$

(c)
$$3x^2 + x - 3\sqrt{2}x$$

(d)
$$3x^2 + 3\sqrt{2}x + 1$$

3. If α , β are the zeros of the polynomial $f(x)=ax^2+bx+c$, then $\frac{1}{\alpha^2}+\frac{1}{\beta^2}=$

(a)
$$\frac{b^2 + 2ac}{c^2}$$

(b)
$$\frac{b^2 - 2ac}{c^2}$$

(c))
$$\frac{b^2 + 2ac}{a^2}$$

(d))
$$\frac{b^2 - 2ac}{a^2}$$

4. The number of zeroes of a cubic polynomial is

5. If a-b, a and a+b are zeros of the polynomial x^3-3x^2+x+1 , then the value of a+b is

(a)
$$-1 - \sqrt{2}$$

(c)
$$-1 + \sqrt{2}$$

(d)1
$$\pm \sqrt{2}$$

6. The number of polynomials having zeros as -2 and 5 is

7. If the sum of the zeros of the quadratic polynomial for $kx^2 + 2x + 3k$ is equal to the product of

Its zeros then k = ?

$$(a)^{\frac{1}{3}}$$

(b)
$$\frac{2}{3}$$

$$(c)^{\frac{-2}{3}}$$

(d)
$$-\frac{1}{3}$$

- 8. The zeroes of the quadratic polynomial $x^2 + 99x + 127$ are
- (a) both negative

(b) one positive and one negative

(c) both positive

- (d) both equal
- 9. The polynomial to be added to the polynomial $x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly divisible by $x^2 + 2x 3$ is

$$(a)x^2 + 1$$

(b)
$$2 - x$$

$$(c)x - 2$$

- (d)x+2
- 10. Find a quadratic polynomial whose one zero is -5 and product of zeroes is 0.
- 11. p(x) = g(x)q(x) + r(x). If degree of g(x) = 4, degree of q(x) = 3 and degree of r(x) = 2, then find the degree of p(x).
- 12. Find the sum of the zeroes of the given quadratic polynomial $-3x^2 + k$.
- 13. Divide $15y^4 16y^3 + 9y^2 \frac{10}{3}y$ by 3y 2.
- 14. Verify that x = 3 is a zero of the polynomial $p(x) = 2x^3 5x^2 4x + 3$.
- 15. If α and β are the zeros of the polynomial $f(x) = x^2 + x 2$, find the value of $(\frac{1}{\alpha} \frac{1}{\beta})$.
- **Answers. 1.** (a) **2.** (b) **3.** (b) **4.** (a) **5.** (d) **6.** (d) **7.** (c) **8.** (a) **9.** (c) **10.** $x^2 + 5x$ **11.** 7 **12.** 0
- **13**. quotient : $5y^3 2y^2 + \frac{5}{3}y$ and remainder=0 **15**. $-\frac{3}{2}$